
Lecture 14 - Capacitors
A Puzzle...

Gravity Screen

Insulators are often thought of as "electrical screens," since they block out all external electric fields. For example, 

if neutral objects are kept inside of a conducting shell (of any shape), the electric field from any charge distribu-

tion outside the conductor will not be felt inside this cavity (by Gauss’s Law).

Example

What is wrong with the idea of a gravity screen, something that will “block” gravity the way a metal sheet seems 

to “block” the electric field? 

Hint: Think about the difference between the gravitational source and electrical sources.

Solution

Gravity cannot be blocked for two very important reasons:

◼ We need opposite-signed charges to block an electric field, so we would particles with negative mass (which to 
date have not been discovered).

◼ In gravitation (unlike in electricity), like charges are attracted to each other. So if we had a fixed point mass 
located outside a spherical shell, we could glue some negative mass on the near side of the shell in such a 
configuration so as to cancel the gravitational effects of this point mass inside of the shell. (We have to glue 
these masses, since otherwise they would be attracted towards each other and stop blocking the gravitational 
field.) But if this point mass was then moved, then we would need to manually update our mass configuration; 
this would significantly more cumbersome than the electrical case. □ 

What’s in a Candle?

Have you ever seen a candle’s flame split in two? This video demonstrates how a flame is comprised of positively 

and negatively charged ions, together with some dramatic repercussions that occur when you stick a flame 

between a parallel plate capacitor.

Theory

Capacitance

The capacitance of two conductors is always calculated using the same simple recipe:

1. Draw your two conductors of interest in the absence of any other charges or electric fields

2. Give one of the conductors a charge +Q and the other a charge -Q (it does not matter which one is positive)

3. Calculate the (positive) voltage difference V  between the two conductors

4. The capacitance C between two conductors is defined as 

C ≡
Q

V (1)

Printed by Wolfram Mathematica Student Edition

https://www.youtube.com/watch?v=a7_8Gc_Llr8&t=1m6s


Some more notes:

◼ We define the capacitance of a single conductor by assuming that the second conductor is a sphere with infinite 
radius. In other words, V  is the potential difference between the surface of the conductor in the problem and 
infinity

◼ Capacitance is a property of the geometry of conductors. In other words, even if in your charge configuration 
the two conductors have a charge Q1 and Q2, if you compute their capacitance you always start off by assuming 
that they are neutral and then assigning a charge +Q to one and -Q to the other

◼ We will cover exactly how the charge Q gets transferred from one conductor to the other next week. As a sneak 
peak, you can imagine connecting a battery between the two neutral conductors which will transfer the charge 
Q from one to the other. We then disconnect this battery and calculate the capacitance of the resulting setup

Complementary Section: Two Concentric Spheres

Problems

Inserting a Plate

Example 

If the capacitance in Panel (a) below is C, what is the capacitance in Panel (b), where a third plate is inserted and 

the outer plates are connected by a wire?

Solution

When we put charge ±Q on the two capacitors in Panel (a), it will spread out uniformly on the inner surfaces of 

both conductors. Since the electric field inside both conductors is zero, the Uniqueness Theorem guarantees that 

this is the only way the charge can be distributed.

If we define the surface charge σ =
Q

A
, the electric field inside will be E =

σ

ϵ0
=

Q

A ϵ0
 so the potential difference 

between the two conductors will be V = E s =
Q s

A ϵ0
. Therefore C =

Q

V
=

A ϵ0

s
.

Once we insert a new plate, we can use the symmetry of the problem to predict that Q

2
 of charge will spread evenly 

on the inner surfaces of the two outer plates while - Q

2
 of charge will spread evenly on both sides of the inner 
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plate. Again, since E = 0 in every conductor, and both outer conductors are at the same potential, the Uniqueness 

Theorem guarantees that this will be the final charge distribution.

Defining σ = Q

2 A
, the electric field between the middle and top plate will be E


=

σ


ϵ0
=

Q

2 A ϵ0
 so the potential differ-

ence between those two plates equals V

= E
 s

2
=

Q s

4 A ϵ0
. Therefore C


=

Q

V
 =

4 A ϵ0

s
= 4 C.

In the more general case where the middle plate is a fraction f  of the distance from one of the outside plates to the 

other, you can show that the capacitance is C

f (1- f )
. This correctly equals 4 C when f = 1

2
. It is minimum when 

f =
1
2

 and goes to infinity as f  goes to 0 or 1. □ 

Coaxial Capacitor

Example

A capacitor consists of two coaxial cylinders of length L, with inner and outer radii a and b. Assume L ≫ b - a, so 

that end corrections may be neglected. Show that the capacitance is C =
2 π L ϵ0

Log[b/a]
. Verify that if the gap between the 

cylinders, b - a, is very small compared with the radius, this result reduces to one that could have been obtained 

by using the formula for the parallel-plate capacitor.

Solutions

Assume that the inner cylinder has a charge Q while the outer cylinder has a charge -Q. Using Gauss’s Law, the 

electric field at a radius a < r < b is given by E =
Q

2 π r L ϵ0
r
. The (absolute value of the) potential between the two 

plates is given by the radial line integral going from r = a to r = b,

V = ∫a

b
E · ⅆs



= ∫a

b


Q

2 π r L ϵ0
r

 · (r


ⅆr)

= ∫a

b Q

2 π r L ϵ0
ⅆr

=
Q

2 π L ϵ0
Log b

a


(6)

Therefore, the capacitance is given by

C =
Q

V
=

2 π L ϵ0

Log[b/a] (7)

In the limit of a small gap s = b - a ≪ a, we can Taylor expand the logarithm as

Log b

a
 = Log a+s

a
 = Log1+ s

a
 ≈

s

a
+O

s

a

2

(8)
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Noting that the area of either cylinder in this limit equals A = 2 π a L, the capacitance reduces to

C =
2 π L ϵ0

s/a
=

A ϵ0

s (9)

which is identical to the capacitance of parallel plates. This must be the case, since in the limit s ≪ a, we can think 

of the two cylinders as many parallel plate capacitors connected in parallel (see Problem 3.18). □ 

Capacitor Paradox

Example 

Two capacitors with the same capacitance C and charge Q are placed next to each other. The two positive plates 

are then connected by a wire. Will charge flow in the wire? Consider two possible scenarios:

(A) Before the plates are connected, the potential differences of the two capacitors are the same (because Q and C 

are the same). So the potentials of the two positive plates are equal. Therefore, no charge will flow in the wire 

when the plates are connected. 

(B) Number the plates 1 through 4, from left to right. Before the plates are connected, there is zero electric field in 

the region between the capacitors, so plate 3 must be at the same potential as plate 2. But plate 2 is at a lower 

potential than plate 1. Therefore, plate 3 is at a lower potential than plate 1, so charge will flow in the wire when 

the plates are connected.

Which reasoning is correct, and what is wrong with the wrong reasoning?

Solution

Reasoning (B) is correct. Plate 3 is indeed at a lower potential than plate 1, so charge will flow. The error in the 

first reasoning is encompassed in the word, "So." Although it is true that the potential differences of the two 

capacitors are the same, this does not imply that the potentials of the two positive plates are equal. If we arbitrarily 

assign zero potential to plate 1, and if the common potential difference is ϕ, then the potentials of the fours plates 

are, from left to right, 0, -ϕ, -ϕ, -2 ϕ. No matter where we define the zero of potential, the potential of the 

leftmost plate is ϕ larger than the potential of the third plate, and 2 ϕ larger than the potential of the rightmost 

plate. □ 

A Four-Plate Capacitor

A 2N-Plate Capacitor
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A Three-Shell Capacitor

Advanced Section: Edge Effects

Let us return to the canonical example of a parallel plate capacitor. As discussed in Equation (3.13), the total 

charge on the top plate of this capacitor is given by 

Q = A
ϵ0(ϕ1-ϕ2)

s
(neglecting edge effects) (28)

From this point on, it is important to keep in the back of your mind that our dealings with the parallel plate capaci-

tor will almost always involve neglecting edge effects. This "almost" is especially important because we will 

occasionally look at phenomena that are entirely caused by edge effects. At such points, it is sometimes difficult to 

separate out what we have learned that is hinges on neglecting edge effects and what is generally true. As a simple 

example, consider the potential difference between the middle points on the top and bottom conductors shown 

above. 

Far away from the edges, the electric field inside the capacitor will be uniform, so that the potential difference 

along any path from A to B (including the straight line path between them) must equal σ
ϵ0

s. So what about an 

exterior path between A and B? If we neglect edge effects, then the electric field outside the capacitor is zero, and 

so we would incorrectly conclude that the potential difference between A and B is 0. But we know one of these 

results must be wrong, since the potential between any two points is independent of the path taken between these 

two points, and indeed it is this latter argument (which neglects edge effects) which is incorrect.

Another interesting example is considered in "Advanced Section: Conductor in a Capacitor" below, where we 

discuss how a conducting slab is sucked into a parallel plate capacitor entirely due to edge effects.

Advanced Section: Conductor in a Capacitor
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Mathematica Initialization
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